Triángulo de Potencias |
¿Qué es Factor de Potencia?
Es simplemente el nombre dado a la relación de la potencia activa usada en un circuito, expresada en vatios o kilovatios (KW), a la potencia aparente que se obtiene de las líneas de alimentación, expresada en voltio-amperios o kilovoltio-amperios (KVA).
Las cargas industriales en su naturaleza eléctrica son de carácter reactivo a causa de la presencia principalmente de equipos de refrigeración, motores, etc. Este carácter reactivo obliga que junto al consumo de potencia activa (KW) se sume el de una potencia llamada reactiva (KVAR), las cuales en su conjunto determinan el comportamiento operacional de dichos equipos y motores. Esta potencia reactiva ha sido tradicionalmente suministrada por las empresas de electricidad, aunque puede ser suministrada por las propias industrias.
Al ser suministradas por las empresas de electricidad deberá ser producida y transportada por las redes, ocasionando necesidades de inversión en capacidades mayores de los equipos y redes de transmisión y distribución.
Todas estas cargas industriales necesitan de corrientes reactivas para su operación.
¿Por qué existe un bajo factor de potencia?
La potencia reactiva, la cual no produce un trabajo físico directo en los equipos, es necesaria para producir el flujo electromagnético que pone en funcionamiento elementos tales como: motores, transformadores, lámparas fluorescentes, equipos de refrigeración y otros similares. Cuando la cantidad de estos equipos es apreciable los requerimientos de potencia reactiva también se hacen significativos, lo cual produce una disminución del exagerada del factor de potencia. Un alto consumo de energía reactiva puede producirse como consecuencia principalmente de:
- Un gran número de motores.
- Presencia de equipos de refrigeración y aire acondicionado.
- Una sub-utilización de la capacidad instalada en equipos electromecánicos, por una mala planificación y operación en el sistema eléctrico de la industria.
- Un mal estado físico de la red eléctrica y de los equipos de la industria.
Cargas puramente resistivas, tales como alumbrado incandescente, resistencias de calentamiento, etc. no causan este tipo de problema ya que no necesitan de la corriente reactiva.
¿Por qué resulta dañino y caro mantener un bajo factor de Potencia?
El hecho de que exista un bajo factor de potencia en su industria produce los siguientes inconvenientes:
Al suscriptor:
- Aumento de la intensidad de corriente
- Pérdidas en los conductores y fuertes caídas de tensión
- Incrementos de potencia de las plantas, transformadores, reducción de su vida útil y reducción de la capacidad de conducción de los conductores
- La temperatura de los conductores aumenta y esto disminuye la vida de su aislamiento.
- Aumentos en sus facturas por consumo de electricidad.
A la empresa distribuidora de energía:
- Mayor inversión en los equipos de generación, ya que su capacidad en KVA debe ser mayor, para poder entregar esa energía reactiva adicional.
- Mayores capacidades en líneas de transmisión y distribución así como en transformadores para el transporte y transformación de esta energía reactiva.
- Elevadas caídas de tensión y baja regulación de voltaje, lo cual puede afectar la estabilidad de la red eléctrica.
Una forma de que las empresas de electricidad a nivel nacional e internacional hagan reflexionar a las industrias sobre la conveniencia de generar o controlar su consumo de energía reactiva ha sido a través de un cargo por demanda, facturado en Bs./KVA, es decir cobrándole por capacidad suministrada en KVA. Factor donde se incluye el consumo de los KVAR que se entregan a la industria.
Aquí encontrarás información detallada sobre la Corrección del factor de potencia y filtrado de armónicos en las instalaciones eléctricas
¿Cómo puedo mejorar el Factor de Potencia?
Mejorar el factor de potencia resulta práctico y económico, por medio de la instalación de condensadores eléctricos estáticos, o utilizando motores sincrónicos disponibles en la industria (algo menos económico si no se dispone de ellos).
A continuación se tratará de explicar de una manera sencilla y sin complicadas ecuaciones ni términos, el principio de cómo se mejora el factor de potencia:
Figura 1 Ilustración potencias en la Industria |
Figura 3 Ilustración Generación de Energía |
Veamos un ejemplo:
Un capacitor instalado en el mismo circuito de un motor de inducción tiene como efecto un intercambio de corriente reactiva entre ellos. La corriente de adelanto almacenada por el capacitor entonces alimenta la corriente de retraso requerida por el motor de inducción.
La figura 4 muestra un motor de inducción sin corrección de factor de potencia. El motor consume sólo 80 amp. para su carga de trabajo. Pero la corriente de magnetización que requiere el motor es de 60 amp, por lo tanto el circuito de alimentación debe conducir: 100amp. RAIZ(802 + 602) = 100 amp .
Figura 4 Motor de Inducción sin corrección de Potencia |
Por la línea de alimentación fluye la corriente de trabajo junto con la corriente no útil o corriente de magnetización. Después de instalar un capacitor en el motor para satisfacer las necesidades de magnetización del mismo, como se muestra en la figura 5 el circuito de alimentación sólo tiene que conducir y suministrar 80 amp. para que e1 motor efectúe el mismo trabajo. Ya que el capacitor se encarga de entregar los 60 amp. Restantes. El circuito de alimentación conduce ahora únicamente corriente de trabajo.
Esto permite conectar equipo eléctrico adicional en el mismo circuito y reduce los costos por consumo de energía como consecuencia de mantener un bajo factor de potencia.
Figura 5 Motor de Inducción con corrección de potencia |
¿ Cómo determinar la cantidad de condensadores necesarios? Midiendo la energía activa y reactiva que consumen las instalaciones existentes, se puede calcular la potencia necesaria (KVAR) que deben tener los condensadores para lograr la compensación deseada. Sin embargo, es recomendable la instalación de registradores de potencia durante el tiempo necesario para cubrir (medir) por lo menos un ciclo completo de operación de la industria, incluyendo sus períodos de descanso.
Por lo general se recomienda realizar registros trifásicos donde se monitoree para cada fase y para el total de la planta: Potencia Activa (KW) y Reactiva (KVAR), Voltaje y Energía (KWH). Los valores de corriente, potencia aparente (KVA) y factor de potencia (FP) se calculan a partir de las lecturas anteriores, sin embargo, si el registrador dispone de la suficiente capacidad podrán se leídos también.
Los intervalos de medición recomendados oscilan entre cada 5 y cada 15 min. como máximo. Por supuesto, a menores intervalos de medición, tendremos mayor exactitud en cuanto a la curva real de la industria, sin embargo esto dependerá de la capacidad del registrador que se utilice y del tipo de empresa a registrar. Aquellas empresas donde sus ciclos de carga varían lentamente, podría extenderse aún mas el intervalo de medición.
De esta forma se podrá obtener una curva de carga completa la cual mostrará la máxima capacidad posible de instalar sin el riesgo de caer en sobrecompensación reactiva.
También es importante, registrar con las mediciones, el grado de distorsión armónica existente; con el objeto de evitar la posibilidad de resonancia entre estos y los bancos de capacitores a instalar .
¿Dónde instalar los Capacitores ? Para la instalación de los capacitores deberán tomarse en cuenta diversos factores que influyen en su ubicación como lo son: La variación y distribución de cargas, el factor de carga, tipo de motores, uniformidad en la distribución de la carga, la disposición y longitud de los circuitos y la naturaleza del voltaje.
Se puede hacer una corrección del grupo de cargas conectando en los transformadores primarios y secundarios de la planta, por ejemplo, en un dispositivo principal de distribución o en una barra conductora de control de motores.
La corrección de grupo es necesaria cuando las cargas cambian radicalmente entre alimentadores y cuando los voltajes del motor son bajos, como por ejemplo, 230 V.
Cuando los flujos de potencia cambian frecuentemente entre diversos sitios de la planta y cargas individuales, se hace necesario efectuar la corrección primero en una parte de la planta, verificar las condiciones obtenidas y después compensar en la otra. Sin embargo, es más ventajoso usar un capacitor de grupo ubicado lo mas equidistante que se pueda de las cargas. Esto permite la desconexión de una parte de los capacitores de acuerdo a condiciones específicas de cargas variables.
Cuando la longitud de los alimentadores es considerable, se recomienda la instalación de capacitores individuales a los motores, por supuesto se necesitarán varios condensadores de diferentes capacidades, resultando esto en un costo mayor. Sin embargo deberá evaluarse el beneficio económico obtenido con la compensación individual. Considerando que el costo de los capacitores para bajos voltajes es más del doble que los de altos voltajes. Por esto, cuando el voltaje de los circuitos de motores es de 230 V, es más económico usar una instalación de grupo si es que ésta se puede efectuar en el primario a 2.400 ó 4.160 V.
Debemos también considerar que, cuando los capacitores se instalan antes del banco principal de transformadores, éstos no se benefician y no se alivia su carga en KVA. Esta es una buena razón para usar capacitores de 230 V a pesar de su alto costo.
Correcciones aisladas La corrección aislada del factor de potencia se debe hacer conectando los capacitores tan cerca como sea posible de la carga o de las terminales de los alimentadores.
Debe recordar que la corrección se lleva a cabo sólo del punto considerado a la fuente de energía y no en dirección opuesta.
Los capacitores instalados cerca de las cargas pueden dejar de operar automáticamente cuando las cargas cesan, incrementan el voltaje y por ende el rendimiento del motor.
Cómo seleccionar una UPS https://www.electricaplicada.com/como-seleccionar-ps-sai/
No hay comentarios:
Publicar un comentario